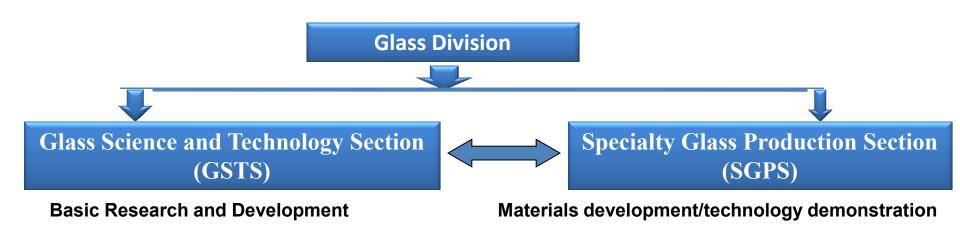


Overview of GGCRI Activities

Ranjan Sen at a market


June 25, 2016

Glass Division (CSIR-CGCRI)

Objective/Mandate of the division:

- Development of specialty glass and glass-ceramics for engineering, medical and strategic applications
- Basic research to explore new areas for futuristic applications: both product and process development.
- Indigenous technology development in strategic fields.
- Moderate to pilot scale production to meet country's demand.
- Teaching/ Training of students and researchers.

Melting Facility

Melting Furnaces (Raising Hearth): 5 Nos. (Maximum 1400 °C) 2 No. (Maximum 1500 °C) 2 No (Maximum 1700 °C)

Induction furnace: 2 No. (1400-1450 °C) (5 lit and 40 lit. capacity)

High Temperature Observation furnace: 1 No. (Maximum 1600 °C)

Annealing/ Ceramization Furnaces : 8 Nos.

Microwave Melting Furnace: 3 No.

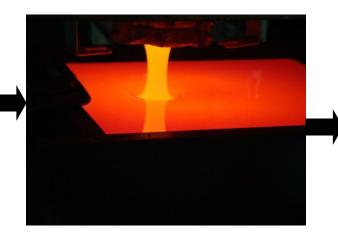
Specialized Furnaces

5 lit Induction furnace

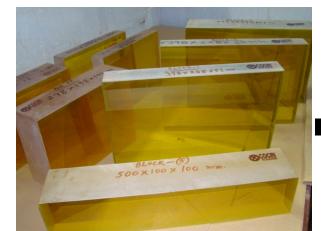
High temperature observation furnace

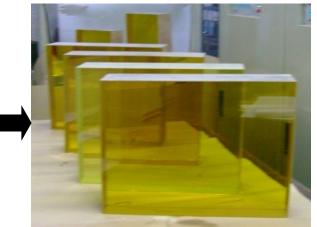
6 kW Microwave Furnace

Rocking furnace



PILOT SCALE FACILITY





Thermal Properties:

Simultaneous Thermal Analysis (DSC, DTA, TGA) (STA 449, Jupiter) Dilatometer (Netzsch DIL402PC)

Spectroscopic Characterization:

Fluorescence spectrophotometer (Quantum Master-enhanced NIR from Photon Technologies International) FTIR spectrometer (Perkin Elmer, IRL 1280119, Frontier) Raman Spectrometer (HORIBA JobinYvon, France; Model: Lab Ram HR 800 EV)

Optical Properties:

Prism Coupler (Metricon Model-2010), UV–Vis-NIR spectrophotometer (LAMDA 950, Perkin Elmer), Polarimeter (M/s Strainoptics Inc., USA, Model :DIAS-1600) Interferometer (Zygo corporation, USA, Model: GPI system-XP/D)

Mechanical Properties: Microhardness Tester (Mastuzawa, MMT-X7B)

Characterization Facilities

Raman Spectrometer (HORIBA, Lab Ram HR 800 EV)

STA (DSC, DTA, TGA) (NETZSCH, Jupiter)

UV-Vis-NIR Fluorescence Spectrophotometer (M/s Photon Technology International)

FTIR Spectrometer (Perkin Elmer, Frontier FT-IR/FIR Spectrometer)

Services towards Testings of Glass/Glass products

> Optical properties:

Refractive Index and Abbe number Dispersion curve Visible Light transmission (VLT) Reflectance Absorption Yellow Index etc

Thermal Properties:

Coefficient of thermal expansion (CTE) sagging temperature DSC/DTA Thermal shock resistance

- Mechanical Properties Micro Hardness Residual stress/toughened glass test
- > Total chemical analysis

Optical Homogeneity

Identification of types of glasses

Laboratory scale trail melting; specific problem solving tests

Initiative taken for establishing facility for :

- > Energy Performance testing of Architectural Glass and DGU.
- Safety and Structural Performance testing of Architectural Glass

Serving for

 \succ

 \succ

>

 \succ

 \triangleright

Reliance Infra

- Areva T & D India limited, Hosur
- Alpha Design Technologies Pvt. Ltd., Bangalore
- Bharat Electronics Ltd., Taloja
 - **Borosil Glass Works Ltd, Ahmedabad**
 - Customs Office, Govt. of India
 - EO2 Systems, Hyderabad
 - Goa Glass fiber Ltd., Goa
 - IFB, Goa
 - Instrumentation Ltd., Kota
 - Lensel Optics, Pune
 - Hindustan Opticals
 - **Ajay Scientific Industries**
 - Prism India Pvt. Ltd
 - Saint Gobain
- Several R&D Organizations

High Density Glass for Radiation Protection

- An essential item for Glove Boxes/ Cells used for nuclear material processing.
- Only 4 countries in the world are known to have the technology.
- Indigenous technology successfully demonstrated
- 20 MT of high density RSW glass blocks produced for DAE.

Applications

- Nuclear power plants
- Waste treatment facilities
- Isotope production facilities
- Nuclear research centers

Annual Demand: 100 MT (for low to high density RSW glass)

Pouring of melt into pre - heated mould

Glass blocks of 400 × 400 × 100 mm sizes

Biggest glass block of 700 × 700 × 35 mm size

Special Glass Beads For Nuclear Waste Immobilization

The material ensures confinement of the radio isotopes in a stable matrix and safe disposal with no threat to the environment.

Process technology developed by CGCRI and transferred to M/s H. R. Johnson, Mumbai for manufacturing

Model: Production by HRJ with direct order from DAE + Certification of the quality by CSIR-CGCRI

Till date 44 MT of glass beads produced and supplied to DAE The technology is of significant importance for the country's nuclear power program.

Annual requirement: 40-50 MT (likely to increase)

NRDC Innovation Award -2013

Borosilicate glass nodules developed at CGCRI, Kolkata

Exchange of Technology Transfer document with M/s H R Johnson

Glass Nodules produced by M/s H R Johnson

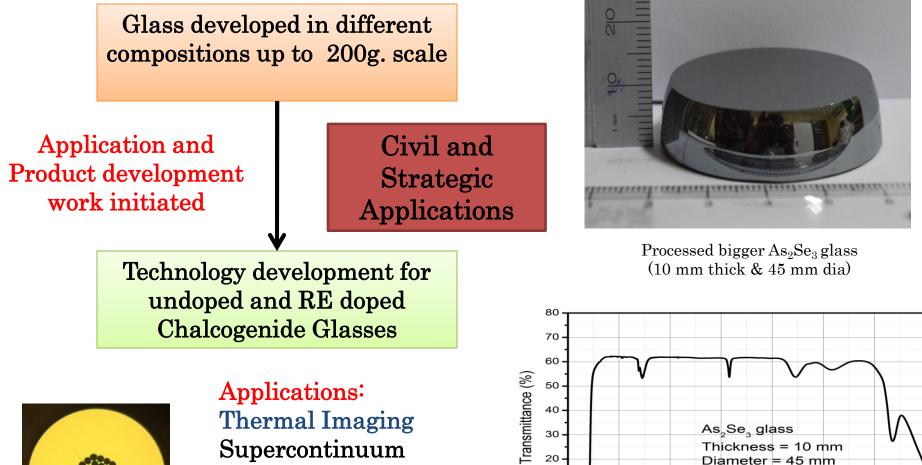
Nd doped Phosphate Glass

Technological Achievements

★First ever development of solid state laser material in the country.
★All stipulated properties achieved.
★The raw materials developed indigenously.
★Melting in 5 lit scale standardized and

glass blocks provided to DAE.

 \star Melting in15 lit scale to be initiated.


Long term requirement by DAE for future programs

USES

- High energy laser system for civil applications
- Inertial confinement fusion for clean energy, material processing, range finder etc.
 - A closely guarded technology. Only 3-4 countries in the world have the capability.
 - The technology has long term implication for country's civil and strategic sectors.

Chalcogenide Glass for IR Optics/ Photonic/ Sensor Applications

10-

0

Ô

2

Supercontinuum Sources Lasers/Amplifier Gas/ Chemical Sensors

Transmission Spectrum

Wavelength (µm)

12

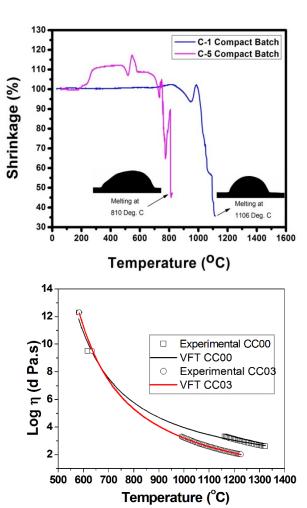
14

10

MAS-20-1D

INVESTIGATION ON THE INCORPORATION OF *BORAX PENTAHYDRATE* AND *COLEMANITE* IN DIFFERENT GLASSES

M/s Borochemie (India) Pvt. Ltd., Mumbai


Feasibility study carried out on using borate minerals such as Borax pentahydrate $(Na_2B_4O_7 \cdot 5H_2O)$ and Colemanite $(CaB_3O_4(OH)_3 \cdot H_2O)$ as the alternate sources for soda and calcia (lime) in glass melting and establishing process technology for two types of commercial glasses (soda lime silica based <u>Float glass</u> and <u>Container glass</u>) in the lab scale

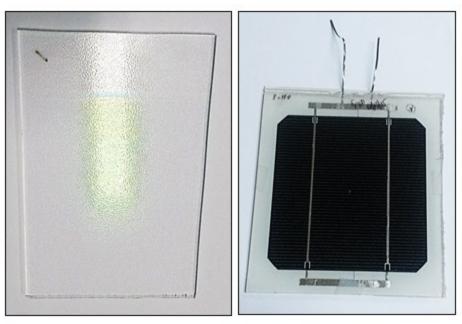
Salient findings:

- Substantial reduction in melting temperature.
- Improvement in physical, optical, thermal and mechanical properties.
- Discussions are going on to take up industrial scale trial meltings

Patents filed:

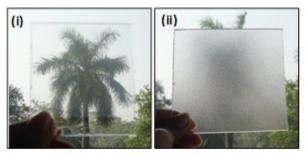
- > ENERGY EFFICIENT SODA LIME SILICATE GLASS COMPOSITIONS USING BORAX PENTAHYDRATE, PCT/IN2014/000027, WO/2014/128714
- > NOVEL SODA LIME SILICATE GLASS COMPOSITION COMPRISING COLEMANITE AND A PROCESS FOR THE PREPARATION THEREOF, PCT/IN2013/000554, WO/2014/195960

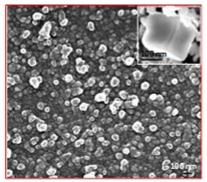
Ultra-low thermal Expansion Transparent (ULET) Glass-Ceramic


Material used for making laser gyroscope

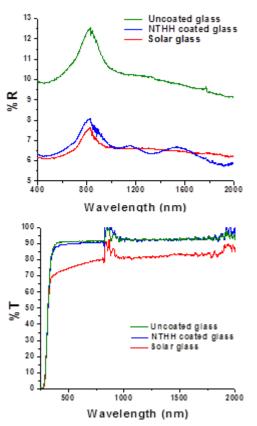
ULET GC has both vitreous and crystalline phases. Coefficient of thermal expansion is $0.13 \times 10^{-6} \text{ K}^{-1} (0-50 \text{ }^{O}\text{C})$

ULET glass ceramic blocks of dimension 90 × 90 × 40 mm3 produced at CGCRI


AR coating on Solar Cell Cover Glasses with hydrophobic surfaces


Salient features:

- Single layer AR coating with mesoporous structure
- Pencil Hardness >5-6H (ASTM D 3363)
- Passed Adhesion test (ASTM D 3359)
- Reflection decreases 4-5% in the wavelength range 380-1000 nm in comparison to the uncoated solar cover glass
- Photo-current (I_{SC}) increased 3–4% in compare to the uncoated solar cover
- After application of thin hydrophobic coating water contact angle can be achieved up to 125° with contact angle hysteresis 10 ±2°


Zeolite crystals embedded nanotextured coating with hydrophobic surface: An innovation towards next generation solar cover glass for efficient light-harvesting

Nano-textured hydrophobic (NTH) coated ordinary glass (i) and millimeter-scale textured solar cover glass (ii)

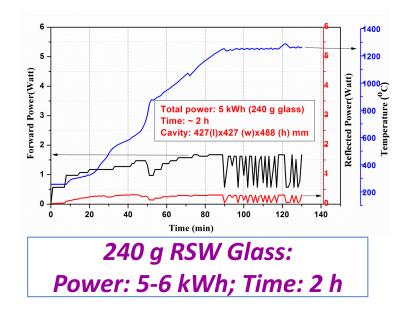
Surface morphology of the NTH coated glass

Percentages of total reflectance and solar transmittance of the uncoated, NTH coated and textured cover glass substrates

Salient features:

• Zeolite crystals embedded hard and hydrophobic nanotextured

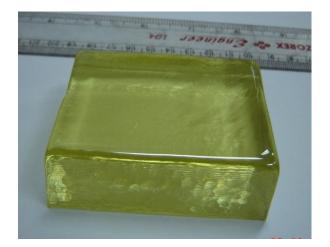
coating

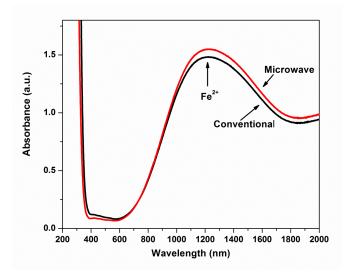

- Pencil Hardness >7H (ASTM D 3363)
- Passed Adhesion test (ASTM D 3359)
- Anti-dazzle and positive temperature effect
- Higher solar transmittance and visibility
- •Photo-current (I_{SC}) increased 3% compared to the millimeter-scale textured cover glass

I. Das, G. De, Adv. Mater. Interfaces, 2016, DOI: 10.1002/admi.201500848

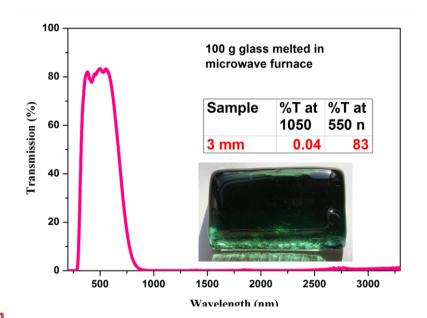
Alternate Glass melting using Microwave heating

Advantage of Microwave heating: * Shorter processing times ; Time saving (60-70 %)


- Energy saving (50-60 %); Eco-friendly
- * Improved properties.
- Less evaporation, less contamination from crucible wall, improved chemical durability
- Development of new properties; Higher Feredox ratio/ retention of more ferrous ion in glass.



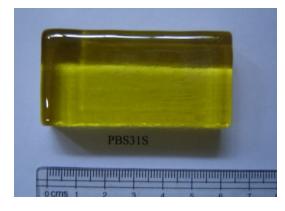
Raising hearth furnace Microwave heating


500 g glass RSW Glass

Microwave heating yield Higher Fe[II] in glass

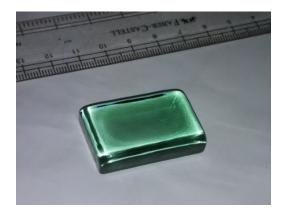
Patent Filed:

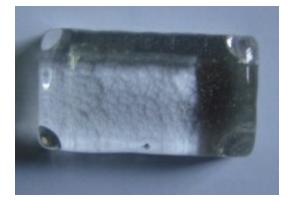
Indian Patent :0022NF2016 ; Process for preparation of iron-doped aluminophosphate glass using microwave energy in air atmosphere for heat absorbing application. Date of filing : 16-03-2016



Manufactured in the U

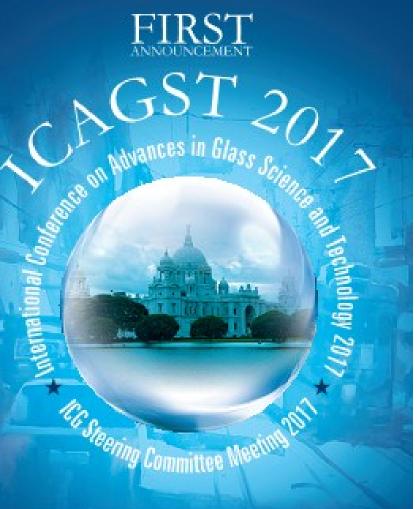
IR Protective goggles Can be made by this glass


Preparation of Bulk Glasses


RSW Glass @1250°C

Zinc Borate glass @ 1200 ° C

Cu-doped phosphate glass @ 1200° C


Barium-boro-silicate glass @1200° C

IR absorbing glass @ 1450° C Phosphate Glass @ 1250°C CGCRI plans to work jointly with interested industrial partners for upscaling the process and production of the following varieties of glass:

- RSW Glass
- Laser Glass
- Specialty Glass beads
- Boron containing Float and Container Glasses

Providing the Technology as well as Certification will be CGCRI responsibility.

January 23 - 25, 2017 (Tutorial: January 19 - 21, 2017) CSIR-CGCRI, Kolkata, India

ICAGST-2017

January 23-25, 2017

(International Conference on Advances in Glass Science and Technology)

ICG-CGCRI Tutorial: January 19-21, 2017)

Thank You